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Consider the DFA M, = (Q, %, 6, qo, F) where

Q=1{q,q}
¥ ={0,1}
qgo = q1

F= {QQ}

and 6 : Q X ¥ — @ defined by the following table

Confirm that the formal description is equivalent to the state diagram in Fig. 1

0 0

start — e

1

Figure 1: A state diagram for M,

Definition 1. Consider w € ¥*, ¢;,q; € Q, and let n = |w|. ¢ Sy q; iff Iro, ..., € Q such
that

1.ro=g¢q;
2. Ti :(S(n-,hwi), V1 S’LSTL
3. rn =g

Statement 1. Let A = {w € ¥* | w has an odd number of 1s}. A = L(Mj).



Let’s start by proving the forward direction: A C L(M).

To prove this, we’ll start with a useful and more straightforward lemma, following our intuitions
that a string with an odd number of ones will swap the state we're in, and one with an even number
will keep us in the same state. Formally, that looks like:

Lemma 1. Consider w € ¥*. qo —>ar, G if the number of 1s in w is even, and q1 >, qo if the
number of 1s in w is odd.

Proof. We will proceed by induction over the length of w!

Base Case: Consider w = ¢ (length 0). € contains an even number of 1s (0), so we must show
that ¢1 — M, q1- Consider the ”"sequence” of states ro = ¢1. Property 2 is trivially true, since we
only have one state, and properties 1 and 3 are self-evident.

Inductive Step: We must show that if statement 1 is true for all w € ¥* with |w| =n — 1, it is
true for all w € ¥* with |w| = n.

Consider an arbitrary w = w; ... w, € ¥* with |w| =n. Let w’ = wy ... w,,. Since |w'| =n—1,
our inductive hypothesis applies, and thus we can assume that if the number of 1s in w’ is even,
G2~y G2, and if not, g1 g, g

Now, since we know that w = wjw’, we can break into cases on the identity of ws:

Case 0: wy = 0. If wy =0, then w and w’ have the same number of 1s. Let’s prove each half
of the statement in turn:

Assume that w has an even number of 0s. Then w’ has an even number of 1s, and we can

assume that gy — M; g2. This means that there exists rg,...r,—1 such that

To =Tn—1 = Q2
T, = 5(Ti_1, w;)

=0(ri—1, Wit1)

Then construct a new sequence rq, ... 7, such that

i—1V1<i<n

That is, we build r{, . . ., r, by prepending g2 to 7o, ..., 7,—1. Then observe that we have constructed
our sequence such that r{ = r/, = g¢q, leaving us to prove that r; = §(r;_1,w;), V1 < i < n. For
1 > 2, this follows from our inductive hypothesis, because the sequence is simply rg,...,7,—1. To
show it’s true for i = 1, observe that since w; = 0 and ¢ = ¢q, delta(rg, w1) = g2 = r3, allowing us
to conclude that go 2 M, G2

A similar argument lets us show the other half. Assume w has an odd number of 0s. By our

inductive hypothesis, we learn that ¢; — M, G2 since it has the same number of 1s and w’ has
length n — 1, which means there exists rq,...7,_1 such that

To =1
T'n—1 = Q2
I
Ty = 5(’/‘1‘_1,wi)

= 0(ri—1, Wit1)



Again, construct r{,...r! by prepending go:

To =@
ri=r;_1,V1<i<n
And obser that r, = ¢1 as necessary, r;, = r,—1 = g2, as necessary, leaving us only to show that
r; = 0(ri—1,w;), V1 < i < n. Again, this follows from our inductive hypothesis for all cases but
1 = 1, because the sequence is simply rg,...,r,—1. To show it’s true for i« = 1, observe that since
wy = 0 and 79 = q1, delta(rg,w1) = g1 = ra, allowing us to conclude that go 1>M1 Q2.

Case 1: Assume w; = 1. We've done it in excruciating detail for Case 0, so I’ll be more terse
in this case.

Again, let w’ = ws ... w, and observe that w’ is subject to our inductive hypothesis.

Now, we should observe that is w contains an odd number of 1s, w’ contains an even number
and vice versa. Let’s now show both halves of the statement in turn:

Assume w has an odd number of 1s. This means w’ has an even number of 1s, and so we can

apply our inductive hypothesis to assume g —— s, g2, which means there exists 7o, ...7r,_1 with
the appropriate properties. Now construct rq,...r, by prepending ¢;:

To=q1
ri=r_1,V1<i<n

And observe that ro = ¢1 and 7, = ¢, and, like in the other cases, 7} = §(rj_,w;) for 2 <i <n
by the inductive hypothesis and the i = 1 case follows from the definition of § and our assumption
that wy, = 1. O

Now we can get to the proof of Statement 1.

Proof (Statement 1). First, we show A C L(My).
Suppose w € A, and thus the number of 1s in w is odd. Thus, by lemma, we know ¢q; — ¢z,
and thus there exists rg, ..., 7, such that

To =41 = qo
rn =qy € F
ri =0(ri—1,w;),V1<i<n

Thus, by definition, M; accepts w, and thus w € L(M), as desired.

Then we need to show that L(M;) C A. We must show that if M; accepts w, w contains an
odd number of 1s. It’ll be easier to proceed via contrapositive for this direction: If w contains an
even number of 1s, then M; will not accept w. That is, if w contains an even number of 1s, there
does not exist a sequence rq,...,r, that has the 3 properties in the definition of acceptance. Of
course, the first 2 properties force our hand: If such an rg,...,7, exists, then rg = qo = ¢1 and
r; = 0(ri—1,w;) for all 1 <14 <n, and such a sequence surely exists by the definition of our DFA.

Thus, to prove w is rejected, we must then prove that r, ¢ F. Since there is only 1 state not
in F, this is equivalent to proving that ¢; —» M, ¢1 if w contains an even number of 1s. I'll leave
completing that proof as an exercise: It’s nearly identical to Lemma 1! O



