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Consider the DFA M1 = (Q,Σ, δ, q0, F ) where

Q = {q1, q2}
Σ = {0, 1}
q0 = q1

F = {q2}

and δ : Q× Σ → Q defined by the following table

δ 0 1
q1 q1 q2
q2 q2 q1

Confirm that the formal description is equivalent to the state diagram in Fig. 1

q1start q2

0

1

0

1

Figure 1: A state diagram for M1

Definition 1. Consider w ∈ Σ∗, qi, qj ∈ Q, and let n = |w|. qi
w−→M qj iff ∃r0, . . . , rn ∈ Q such

that

1. r0 = qi

2. ri = δ(ri−1, wi), ∀1 ≤ i ≤ n

3. rn = qj

Statement 1. Let A = {w ∈ Σ∗ | w has an odd number of 1s}. A = L(M1).
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Let’s start by proving the forward direction: A ⊆ L(M).
To prove this, we’ll start with a useful and more straightforward lemma, following our intuitions

that a string with an odd number of ones will swap the state we’re in, and one with an even number
will keep us in the same state. Formally, that looks like:

Lemma 1. Consider w ∈ Σ∗. q2
w−→M1

q2 if the number of 1s in w is even, and q1
w−→M1

q2 if the
number of 1s in w is odd.

Proof. We will proceed by induction over the length of w!
Base Case: Consider w = ε (length 0). ε contains an even number of 1s (0), so we must show

that q1
ε−→M1

q1. Consider the ”sequence” of states r0 = q1. Property 2 is trivially true, since we
only have one state, and properties 1 and 3 are self-evident.
Inductive Step: We must show that if statement 1 is true for all w ∈ Σ∗ with |w| = n − 1, it is
true for all w ∈ Σ∗ with |w| = n.

Consider an arbitrary w = w1 . . . wn ∈ Σ∗ with |w| = n. Let w′ = w2 . . . wn. Since |w′| = n− 1,
our inductive hypothesis applies, and thus we can assume that if the number of 1s in w′ is even,
q2

w−→M1 q2, and if not, q1
w−→M1 q2.

Now, since we know that w = w1w
′, we can break into cases on the identity of w1:

Case 0: w1 = 0. If w1 = 0, then w and w′ have the same number of 1s. Let’s prove each half
of the statement in turn:

Assume that w has an even number of 0s. Then w′ has an even number of 1s, and we can

assume that q2
w′

−→M1 q2. This means that there exists r0, . . . rn−1 such that

r0 = rn−1 = q2

ri = δ(ri−1, w
′
i)

= δ(ri−1, wi+1)

Then construct a new sequence r′0, . . . r
′
n such that

r′0 = q2

r′i = ri−1∀1 ≤ i ≤ n

That is, we build r′0, . . . , rn by prepending q2 to r0, . . . , rn−1. Then observe that we have constructed
our sequence such that r′0 = r′n = q2, leaving us to prove that ri = δ(ri−1, wi), ∀1 ≤ i ≤ n. For
i ≥ 2, this follows from our inductive hypothesis, because the sequence is simply r0, . . . , rn−1. To
show it’s true for i = 1, observe that since w1 = 0 and r0 = q2, delta(r0, w1) = q2 = r2, allowing us

to conclude that q2
w−→M1 q2.

A similar argument lets us show the other half. Assume w has an odd number of 0s. By our

inductive hypothesis, we learn that q1
w′

−→M1
q2 since it has the same number of 1s and w′ has

length n− 1, which means there exists r0, . . . rn−1 such that

r0 = q1

rn−1 = q2

ri = δ(ri−1, w
′
i)

= δ(ri−1, wi+1)
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Again, construct r′0, . . . r
′
n by prepending q2:

r′0 = q1

r′i = ri−1,∀1 ≤ i ≤ n

And obser that r′0 = q1 as necessary, r′n = rn−1 = q2, as necessary, leaving us only to show that
ri = δ(ri−1, wi), ∀1 ≤ i ≤ n. Again, this follows from our inductive hypothesis for all cases but
i = 1, because the sequence is simply r0, . . . , rn−1. To show it’s true for i = 1, observe that since

w1 = 0 and r0 = q1, delta(r0, w1) = q1 = r2, allowing us to conclude that q2
w−→M1

q2.
Case 1: Assume w1 = 1. We’ve done it in excruciating detail for Case 0, so I’ll be more terse

in this case.
Again, let w′ = w2 . . . wn and observe that w′ is subject to our inductive hypothesis.
Now, we should observe that is w contains an odd number of 1s, w′ contains an even number

and vice versa. Let’s now show both halves of the statement in turn:
Assume w has an odd number of 1s. This means w′ has an even number of 1s, and so we can

apply our inductive hypothesis to assume q2
w′

−→M1
q2, which means there exists r0, . . . rn−1 with

the appropriate properties. Now construct r0, . . . rn by prepending q1:

r′0 = q1

r′i = ri−1,∀1 ≤ i ≤ n

And observe that r0 = q1 and r′n = q2, and, like in the other cases, r′i = δ(r′i−1, wi) for 2 ≤ i ≤ n
by the inductive hypothesis and the i = 1 case follows from the definition of δ and our assumption
that w1 = 1.

Now we can get to the proof of Statement 1.

Proof (Statement 1). First, we show A ⊆ L(M1).

Suppose w ∈ A, and thus the number of 1s in w is odd. Thus, by lemma, we know q1
w−→ q2,

and thus there exists r0, . . . , rn such that

r0 = q1 = q0

rn = q2 ∈ F

ri = δ(ri−1, wi),∀1 ≤ i ≤ n

Thus, by definition, M1 accepts w, and thus w ∈ L(M), as desired.
Then we need to show that L(M1) ⊆ A. We must show that if M1 accepts w, w contains an

odd number of 1s. It’ll be easier to proceed via contrapositive for this direction: If w contains an
even number of 1s, then M1 will not accept w. That is, if w contains an even number of 1s, there
does not exist a sequence r0, . . . , rn that has the 3 properties in the definition of acceptance. Of
course, the first 2 properties force our hand: If such an r0, . . . , rn exists, then r0 = q0 = q1 and
ri = δ(ri−1, wi) for all 1 ≤ i ≤ n, and such a sequence surely exists by the definition of our DFA.

Thus, to prove w is rejected, we must then prove that rn /∈ F . Since there is only 1 state not
in F , this is equivalent to proving that q1

w−→M1
q1 if w contains an even number of 1s. I’ll leave

completing that proof as an exercise: It’s nearly identical to Lemma 1!
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