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A quirk of the standard Computer Science curriculum is that at a certain
point, students somehow realize that the field of Computer Science is distinct
from that of, say, Software Engineering or just programming. Instead, CS turns
out to be a discipline that overlaps greatly (if not entirely) with Mathematics!
That is, we use formal mathematical tools (like, say, proofs and formal logic) to
study the abstract concept of computation, whether it be analyzing the runtime
or correctness of an algorithm or proving that only having a stack as memory
will get you into trouble.

Either way, you’ll be asked to write a proof. This will probably happen at
first in a proper math course (Macalester’s Discrete Math!), but moving from
proving purely mathematical statements to writing things about algorithms
can make things a little more complicated. Unfortunately, on top of building
up a mathematical argument, you have to learn to actually write a proof on
paper (or, rather, in a LaTeX document). You will likely get docked points at
some point for writing a proof that is technically correct, but written poorly!
This document’s goal is to help introduce you to the proper style for
mathematical proofs. However, you should note that this is guidance that
is based on my courses — most folks with some mathematical training can
identify particularly bad proofs, but some finer matters of style come down to
taste, and in the interest of giving you firm guidance and helping you develop
some of that taste, I will be asking you to abide by my stylistic preferences for
my courses. Of course, another instructor may tell you to format differently in
their courses — this is normal and expected! Embrace the variety as you find
your voice!

1 A brief review of proofs

A proof is simply a formal mathematical argument. It’s goal is to rigorously
argue for the truth of the statement. Because we need to be rigorous, we need
to write them in such a way that the underlying logic is clear and undeniable.

However, the primary goal of a proof is to be convincing, which requires not
just correctness, but clarity. Just like any writing, proof writing requires you to
write in a manner that is understandable to a human reader (specifically, one

1



trained in some mathematics). This disallows you from giving me proofs that
look like formal logic — wrong class!

To find a happy medium between logically sound and human readable, we
will often adopt a proof technique to aid us in forming our argument. Sometimes,
we’ll be able to write a few sentences that logically follow from each other and
give us the result we want (i.e., By definition, even numbers can be written in
the form 2k, so 6 is even because it can be written as 3(2).), but this will often
be limited to very simple results. In other cases, we’ll need to employ more
complex tools whose logical foundations are well known.

For example, a proof by contradiction allows you to assume the statement
is false, and show that that leads to an impossible conclusion. Logically, we know
that if a statement’s falsity is impossible, that statement must be true. A proof
by construction proves a claim that something exists by presenting that thing.
A proof by counterexample is a variation of this where a universal claim is
proven false by providing a case where it does not hold.

Most important to us is a trickier kind of proof called a proof by induction,
where we prove a statement that something holds for a (countably) infinite
number of cases. We prove this in the same way we knock down (potentially
countably infinite) dominos: we set up one case that we can knock down easily,
and then arrange the dominos in a way where knocking down any domino knocks
down the one after. That is, we construct a base case that we can prove easily,
and then argue for the inductive step: If case n is true (what we call the
inductive hypothesis), then case n+1 is true. With these, we know that this
is true for all cases after the base case!

In fact, many proofs will require you to break your argument into cases:
perhaps it’s easy to prove a statement for all odd numbers and all even numbers,
but you’re asked to prove it for all integers — it turns out every integer is either
even or odd, so by proving each half you’ve solved the whole thing!

2 Tips for Proof Writing

• Be as precise and explicit as possible. When introducing a new
variable, let the reader know what kind of variable it is (i.e., instead of
writing “for any x or y” write “for any pair of integers x and y” or,
better yet, write “for x, y ∈ Z”). When proving a statement, make sure
you’ve written out the statement right at the beginning. The same goes
for loop invariants, inductive hypotheses, and other statements used in
more sophisticated proof techniques that we’ll see! Indicate why steps in
the proof are justified (are you using a theorem or definition? Is it just
an algebraic reduction or is there something more? Are there other cases
you need to handle that are trivial?).

• Adopt common proof phrasing. When you read proofs from the text-
book, additional readings, or course notes, you’ll see a handful of phrases
repeated. Proofs are not the place for originality — copy them! i.e., things

2



like “Assume for contradiction that. . . ”, or things like “by definition, . . . ”
or “by our inductive hypothesis” or “Proceed by cases:”.

• Re-read your proofs critically! The goal of a proof is to succinctly
present a mathematical argument. When you write a proof, it’s easy to
overlook missing steps or faulty logic because you have the full argument
in your head, so it’s good practice to take a break and read your proof
back with fresh eyes. When you read, read critically: Look for gaps in
the logic: Are there hidden assumptions you’re making that you haven’t
stated? Are there missing cases you need to consider? Does the next step
follow from the current step? Can you construct a counterexample to a
claim you make? Most importantly, can you follow the argument? Clarity
matters too!

• Trim the fat. While writing a proof, you’ll likely want to do a lot of
scratch work. For example, if you want to prove that an algorithm is
correct, you might want to work through a couple of examples by hand
and show that the algorithm works correctly on those particular exam-
ples. This will help you build an intuition for how the algorithm works.
On the other hand, this is not useful for the reader of the proof! You
must, instead, provide an argument that the algorithm is always right,
and an individual example doesn’t help do that! Similarly, you might
(and hopefully will!) develop deep insights that help you understand why
the algorithm works, or you realize new ways to reinterpret what the algo-
rithm is doing that make things click for you. These insights are fantastic,
but should not be in a formal proof! Keep proofs rigorous, but terse!

• Never get too stuck. If you don’t know how to solve a problem, it’s
useful to spend some time searching your brain, but it’s dangerous to
spend too much time not making any progress. My two pieces of advice
are to reread the book/your notes, and to just try things. In this course,
your job will not be to invent new or novel proof ideas. Instead, it will
almost always be to see how a novel looking problem is just a twist on an
example we went through in lecture. Jog your memory and see if any seem
similar. If one does, see if that technique can apply somewhere. Can you
reframe the problem so that it looks like something you’ve seen before?
Worst case, work through some examples! These won’t constitute a proof,
but they might reveal some ideas that can apply to any example!

3 Sample Proofs, Good and Worse

Of course, these tips are a bit abstract, so here are some sample proofs at
different levels of proof-style development. These should give you an idea of
the kinds of things I (or a preceptor) might mark you down for in a homework
assignment.
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First, here’s the problem: A classic you may have seen in, say, Discrete
Math, along with relevant definitions/corollary.

Sample Problem Prove that
√
2 is irrational.

Definition A number x ∈ R is irrational iff there exist no two integers a, b ∈ Z such
that x = a

b .

Corollary If a number x ∈ R is rational, then there exist integers a, b such that x = a
b

and a and b share no factors (i.e., x’s simplified form).

Now lets look at a few proofs. When reading each of these, think about
parts of the proof you like and parts of the proof you don’t. How would you
write out this solution? Do you like reading it? Does it apply the tips I gave
you earlier?

After doing this, read my comments about each proof afterwards to get an
idea of how I see each proof and adjust your mental model. Again, the goal is
not to agree wholeheartedly with my preferences, but to understand what I’m
looking for and why I prefer the style.

Proof 1: Lemma: For a ∈ Z, if a2 is even, a is even.
Pf.: We’ll proceed by proving the contrapositive: If a is odd, then a2 is
odd. By definition, a = 2k + 1 for some k ∈ Z. Then

a2 = (2k + 1)2

= 4k2 + 4k + 1

= 2(2k2 + 2k) + 1

Thus, with k′ = 2k2 + 2k ∈ Z, a2 = 2k′ + 1 and therefore a2 is odd. □

Statement:
√
2 is irrational.

Pf.: Assume for contradiction that
√
2 is rational. Then, by definition,

there exists a, b ∈ Z such that
√
2 = a

b . By the corollary, we can assume
that we choose a and b such that they share no common factors. Thus,

√
2 =

a

b

2 =
a2

b2

2b2 = a2

And thus a2 is even. By the lemma, a must be even, which means there
exists k ∈ Z such that a = 2k, Plugging this back into the above equation,
we get

2b2 = (2k)2

2b2 = 4k2

b2 = 2k2
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Thus b2 is even, and by the lemma b must be even. However, if both
a and b are even, they share a common factor of 2, which contracts our
assumption that a and b share no common factors. Thus,

√
2 must be

irrational. □

Proof 2:
√
2 can’t be rational because that would mean it could be written as a

b

because then 2 = a2

b2 , but then a2 is even, but because they’re squared b2

is also even, which means a and b are both even, which means that a
b are

not in simplest terms. But even if they were in simplest terms, the above
argument would still hold, so there must not be any simplest form, which
means x is irrational.

Proof 3: Statement:
√
2 is irrational.

Pf.: Suppose x is rational. Then

√
2 =

a

b

2 =
a2

b2

2b2 = a2

Then a2 is even which means a is even. Then

2b2 = (2k)2

2b2 = 4k2

b2 = 2k2

Then b2 is even, and thus b is even. □

Proof 4: Statement:
√
2 is irrational.

Pf.: There’s not a lot to work with for irrational numbers, so we’ll use
proof by contradiction so we can assume x is rational. Rational numbers
can be written as ratios of integers, so we can write x as a

b for integers
a, b. Since a rational number can always be expressed in simplest terms,
we can assume a and b share no common factors, which means that if we
find some c that divides both we’ve proven our contradiction.

We can then use some algebraic rules to simplify:

√
2 =

a

b

but then we square both sides

2 =
a2

b2

and multiply both sides by b2

2b2 = a2
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and since we can let k = b2 then a2 = 2k and thus a2 is, by definition,
even.

Now if a2 is even, then for some integer k′, a2 = 2k′, and thus the 2 on
the right-hand side must be in the a being squared, which means that a
must be even too, which means for some k′′, a = 2k′′. For example, if
a2 = 16, which is even, then a = 4, which is also even.

Thus, we can substitute 2k′′ for a, getting

2b2 = (2k′′)2

which reduces to
2b2 = 4k′′2

divide by 2 to get
b2 = 2k′′2

Which, if we let k′′′ = k′′2, lets us conclude that b2 is even, and by a
similar argument to above, lets us know that b is even.

We assumed at the beginning that a and b shared no common factor, but
we found that both a and b are even, which means we found a contradic-
tion. This means that a and b were not in simplified form. One might
think that we’ve just chosen the wrong a and b, but the argument above
will work for any a and b that let x = a

b , so there can be no simplified

form, and thus no form at all. Thus
√
2 must be irrational. □

My comments:

Proof 1: This would be my model solution. Observe how the proof is structured:
There is a small part of the proof that is self-contained and not too deeply
tied to the main proof, so we silo that off in a lemma beforehand. We are
fairly terse (though you can probably be even more brief if you’d like!),
and only present enough to show that the result is correct. Every line
contributes to the argument, and each line is precise and clear.

Proof 2: This proof is far too threadbare. To me, this proof is hard to follow, with
a long series of “which means y” clauses following each other with little
justification. The lack of clarity is the worst right at the end, where the
corollary is used in a messy way: Much easier and more clear to a reader
to present the argument in the way it is in proof 1! Much of the work of
proofwriting will be understanding what the right argument is, but don’t
neglect the work of finding a clear and convincing way to present that
argument.

Also note that nothing said here is wrong, persay, it’s simply that nearly
every true statement is unjustified. Note that the lemma proved in proof
1 is just assumed implicitly here!

Also note that the proof only implicitly states what you’re meant to prove.
Write out the statement clearly!
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Proof 3: This proof is little more clear than Proof 2 (primarily though better for-
matting and reliance on mathematical notation), but still lacks the rigor
required of a proof at this level. Again, look at how the lemma proven in
Proof 1 is just casually assumed!

Also note that the proof leaves out another bit of logic: A reader may
wonder why b being even ends the proof! It’s tricky to get a feel for
how big of a leap of reasoning one should make, but this is certainly to
large — observe how the prior proofs presented the tricky logic based on
the corollary to go from the fraction being unreduced to showing no such
fraction can exist!

Proof 4: This proof is on the other end of things: Way too verbose! The benefit of
mathematical notation is that you can save the reader’s time by expressing
complex things quickly and precisely, but most of the verbiage here is both
redundant and imprecise. For example, all of the text between lines of
the algebraic reductions add very little that one couldn’t get from reading
the equations!

There is also a lot of text that adds nothing to the proof, but adds intuition
or recaps the writer’s thought process. Remember, a proof is not meant
to be autobiographical! These additional lines (“there’s not a lot to work
with for irrational numbers. . . ” or ”One might think that weive just. . . ”)
might be useful pedagogical tools (in fact, I might pepper them in during
my presentation of proofs for that exact reason!), but when you write
proofs, keep in mind that you don’t have that same goal.

This might be frustrating at times (“I’m doing something the professor is
doing, why is it wrong!”), but the key is to do what you should do for all
writing: Consider the audience and the goals of your writing! Your
proofs are not meant to teach, or to show off every bit of information you
know, or to demonstrate all of your thought processes. There are other
times for that. Your goal is to clearly and concisely present a mathematical
argument for the correctness of a statement, Nothing less, but also nothing
more!
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